• Der Unterschied zwischen Trennschaltern und Leistungsschaltern in Stromversorgungssystemen May 22, 2024
    Nr.1Das Symbol für den Trennschalter ist QS und das Symbol für den Leistungsschalter ist QF. In Funktion und Aufbau unterscheiden sich Trennschalter und Leistungsschalter im Wesentlichen wie folgt:1. Funktion: Der Leistungsschalter verfügt über eine Lichtbogenlöschvorrichtung und kann mit Last betrieben werden, einschließlich Laststrom und Fehlerstrom; Der Trennschalter verfügt über keine Lichtbogenlöscheinrichtung und wird normalerweise zum Trennen der Stromversorgung verwendet. Er kann nicht zum Abschalten oder Einspeisen von Lastströmen und Fehlern über einer bestimmten Kapazität verwendet werden. aktuell.2. Struktur: Die Struktur des Leistungsschalters ist relativ komplex und besteht normalerweise aus Kontakten, Betätigungsmechanismus, Auslösevorrichtung usw.; Der Aufbau des Trennschalters ist relativ einfach und besteht hauptsächlich aus einem Messerschalter und einem Betätigungsmechanismus.Nr.2 Hinsichtlich der Einsatzzwecke und Betriebsmethoden bestehen die wesentlichen Unterschiede zwischen Trennschaltern und Leistungsschaltern in folgenden Punkten:1. Verwendungszwecke: Leistungsschalter werden normalerweise in Hochspannungssystemen wie Umspannwerken, Übertragungsleitungen usw. eingesetzt. Trennschalter werden üblicherweise in Niederspannungsnetzen wie Verteilerkästen, Schaltschränken usw. eingesetzt.2. Betriebsart: Die meisten Leistungsschalter werden per elektrischer Fernsteuerung bedient; Die meisten Trennschalter werden durch örtliche Handbetätigung betätigt. Zusammenfassend lässt sich sagen, dass der Leistungsschalter eine leistungsfähigere Funktion hat und Überlastschutz und Kurzschlussschutz bieten kann, während der Trennschalter hauptsächlich zum Trennen der Stromversorgung verwendet wird, um die Sicherheit bei Inspektion, Wartung oder anderen Vorgängen zu gewährleisten. 
  • Anwendung von AFCI in Photovoltaik-Wechselrichtern May 08, 2024
    HintergrundBrandgefahr: Feuer ist der größte wirtschaftliche Schaden von Photovoltaikanlagen. Wird es auf dem Dach einer Fabrik oder eines Wohngebäudes installiert, kann es leicht zu einer Gefährdung der persönlichen Sicherheit führen.In allgemeinen zentralisierten Photovoltaiksystemen gibt es mehrere Dutzend Meter Hochspannungs-Gleichstromleitungen zwischen 600 V und 1000 V zwischen dem Photovoltaik-Modularray und dem Wechselrichter, was als potenzielles Sicherheitsrisiko für Menschen und Gebäude angesehen werden kann. Es gibt viele Faktoren, die zu Brandunfällen in Photovoltaik-Kraftwerken führen. Laut Statistik werden mehr als 80 % der Brandunfälle in Photovoltaikkraftwerken durch DC-Seitenfehler verursacht, wobei DC-Lichtbögen die Hauptursache sind.2. GründeIn der gesamten Photovoltaikanlage beträgt die Spannung auf der Gleichstromseite üblicherweise 600–1000 V. Aufgrund lockerer Verbindungen von Photovoltaikmodulen, schlechtem Kontakt, Feuchtigkeit in den Drähten, beschädigter Isolierung usw. kann es leicht zu Gleichstromlichtbögen kommen.Durch Gleichstromlichtbögen steigt die Temperatur des Kontaktteils stark an. Kontinuierlicher Lichtbogen erzeugt eine hohe Temperatur von 3000–7000 °C, begleitet von einer Hochtemperaturkarbonisierung der umliegenden Geräte. Im geringsten Fall können Sicherungen und Kabel durchbrennen. Im schlimmsten Fall verbrennen Bauteile und Geräte und verursachen Brände. Derzeit sehen die UL- und NEC-Sicherheitsbestimmungen verbindliche Anforderungen für Lichtbogenerkennungsfunktionen für Gleichstromsysteme über 80 V vor.Da ein Brand in einer Photovoltaikanlage nicht direkt mit Wasser gelöscht werden kann, sind Frühwarnung und Prävention sehr wichtig. Insbesondere bei farbigen Stahlziegeldächern ist es für das Wartungspersonal schwierig, Fehlerstellen und versteckte Gefahren zu überprüfen. Daher ist die Installation eines Wechselrichters mit Lichtbogenerkennungsfunktion erforderlich. Sehr nötig.3. LösungenAbgesehen davon, dass Hochspannungsgleichstrom leicht Brände verursacht, ist es auch schwierig, Brände zu löschen, wenn ein Brand entsteht. Gemäß der nationalen Gleichspannungsspezifikation GB/T18379 für elektrische Gebäudeausrüstung werden für Photovoltaikanlagen auf Hausdächern Systemlösungen mit einer gleichspannungsseitigen Spannung von nicht mehr als 120 V bevorzugt.Für Photovoltaikanlagen mit einer DC-seitigen Spannung von mehr als 120 V wird empfohlen, Schutzvorrichtungen wie Störlichtbogenunterbrecher (AFCI) und DC-Schalter zu installieren; Wenn das Gleichstromkabel vom Photovoltaikmodul zum Wechselrichter länger als 1,5 Meter ist, wird empfohlen, ein Schnellabschaltgerät hinzuzufügen oder einen Optimierer zu verwenden, damit im Brandfall der Hochspannungs-Gleichstrom rechtzeitig zum Löschen abgeschaltet werden kann das Feuer.AFCI: (Arc-Fault Circuit-Interrupter) ist ein Schutzgerät, das den Stromkreis trennt, bevor sich der Lichtbogenfehler zu einem Brand entwickelt oder ein Kurzschluss auftritt, indem es das charakteristische Lichtbogenfehlersignal im Stromkreis identifiziert.Als Stromkreisschutzgerät besteht die Hauptfunktion von AFCI darin, durch Störlichtbögen verursachte Brände zu verhindern und lose Schrauben und schlechte Kontakte in der Gleichstromschleife effektiv zu erkennen. Gleichzeitig ist es in der Lage, normale Lichtbögen und Fehlerlichtbögen, die der Wechselrichter beim Starten, Stoppen oder Schalten erzeugt, zu erkennen und zu unterscheiden und den Stromkreis nach Erkennung von Fehlerlichtbögen umgehend zu unterbrechen.Darüber hinaus weist AFCI die folgenden Merkmale auf:1. Es verfügt über eine effektive DC-Lichtbogenerkennungsfunktion, sodass der maximale DC-Strom 60 A erreichen kann.2. Es verfügt über eine benutzerfreundliche Schnittstelle und kann aus der Ferne angeschlossen werden, um Leistungsschalter oder Steckverbinder zu steuern.3. Es verfügt über eine RS232-zu-485-Kommunikationsfunktion und kann den Modulstatus in Echtzeit überwachen;4. LED und Summer können verwendet werden, um den Betriebsstatus des Moduls schnell zu erkennen und Ton- und Lichtalarme bereitzustellen;5. Funktionale Modularisierung, einfache Übertragung auf verschiedene ProduktserienIm Hinblick auf den Lichtbogenschutz von Photovoltaikanlagen schöpfen wir die Rolle der sauberen Photovoltaikenergie voll aus und entwickeln spezielle AFCI für Photovoltaik-Gleichstromsysteme, die den Serien-DC-Lichtbogenschutz von Photovoltaik-Wechselrichtern, Anschlusskästen und Photovoltaik-Batteriemodulen umfassen.Um den neuen Anforderungen des Smart Grid an das Schalten von Geräten gerecht zu werden und die Kommunikation und Vernetzung von AFCI zu realisieren, werden Intelligenz und zugehörige Bustechnologie, Kommunikation und Vernetzung sowie andere Technologien eine größere Rolle spielen. Im Hinblick auf die Serialisierung und Standardisierung von AFCI-Produkten werden die Serialisierung, Standardisierung und Zubehörmodularisierung von AFCI den Anwendungsbereich in der Stromverteilung von Endgeräten erheblich erweitern.
  • Welche Vorsichtsmaßnahmen sind bei der Installation netzgekoppelter Wechselrichter zu beachten? Welche Vorsichtsmaßnahmen sind bei der Installation netzgekoppelter Wechselrichter zu beachten? Apr 22, 2024
    Ongrid-Solarwechselrichter zeichnen sich durch eine hohe Arbeitseffizienz und zuverlässige Leistung aus. Sie eignen sich für die Installation in abgelegenen Gebieten, in denen niemand Wartungs- oder Dienstarbeiten durchführt. Sie können die Nutzung der Solarenergie maximieren und so die Effizienz des Systems verbessern. Im Folgenden stelle ich Ihnen die Installationsvorkehrungen für die Installation netzgekoppelter Wechselrichter vor. 1. Vor der Installation sollten Sie zunächst prüfen, ob der Wechselrichter beim Transport beschädigt wurde.2. Stellen Sie bei der Wahl des Installationsortes sicher, dass keine Störungen durch andere leistungselektronische Geräte in der Umgebung auftreten.3. Bevor Sie elektrische Anschlüsse herstellen, decken Sie die Photovoltaikmodule unbedingt mit undurchsichtigen Materialien ab oder trennen Sie den DC-seitigen Leistungsschalter. Bei Sonneneinstrahlung erzeugen Photovoltaikanlagen gefährliche Spannungen.4. Alle Installationsarbeiten dürfen nur von professionellen Technikern durchgeführt werden.5. Die in der Stromerzeugungsanlage der Photovoltaikanlage verwendeten Kabel müssen fest angeschlossen, gut isoliert und von geeigneter Spezifikation sein.6. Alle Elektroinstallationen müssen den örtlichen und nationalen Elektronormen entsprechen.7. Der Wechselrichter darf nur an das Stromnetz angeschlossen werden, nachdem die Genehmigung der örtlichen Energiebehörde eingeholt wurde und alle elektrischen Anschlüsse von professionellen Technikern durchgeführt wurden.8. Bevor Sie Wartungsarbeiten durchführen, sollten Sie zunächst die elektrische Verbindung zwischen dem Wechselrichter und dem Netz und dann die DC-seitige elektrische Verbindung trennen.9. Warten Sie mindestens 5 Minuten, bis die internen Komponenten entladen sind, bevor Sie Wartungsarbeiten durchführen.10. Jeder Fehler, der die Sicherheitsleistung des Wechselrichters beeinträchtigt, muss sofort behoben werden, bevor der Wechselrichter wieder eingeschaltet werden kann.11. Vermeiden Sie unnötigen Kontakt mit der Platine.12. Beachten Sie die Vorschriften zum elektrostatischen Schutz und tragen Sie ein antistatisches Armband.13. Achten Sie auf die Warnhinweise auf dem Produkt und befolgen Sie diese.14. Führen Sie vor dem Betrieb eine vorläufige Sichtprüfung des Geräts auf Schäden oder andere gefährliche Zustände durch.15. Achten Sie auf die heiße Oberfläche des Wechselrichters. Beispielsweise behält der Kühler von Leistungshalbleitern nach dem Ausschalten des Wechselrichters noch eine Zeit lang eine hohe Temperatur bei.
  • Analyse der Hauptparameter des Wechselrichters Analyse der Hauptparameter des Wechselrichters Apr 13, 2024
    Der DC-Eingang des netzgekoppelten Photovoltaik-Wechselrichters umfasst hauptsächlich die maximale Eingangsspannung, die Startspannung, die Nenneingangsspannung, die MPPT-Spannung und die Anzahl der MPPTs.Unter anderem bestimmt der MPPT-Spannungsbereich, ob die Spannung nach der Reihenschaltung der Photovoltaik-Strings dem optimalen Spannungseingangsbereich des Wechselrichters entspricht. Die Anzahl der MPPTs und die maximale Anzahl der Eingangsstränge für jeden MPPT bestimmen die seriell-parallele Designmethode von Photovoltaikmodulen. Der maximale Eingangsstrom bestimmt den maximalen String-Eingangsstromwert jedes MPPT und ist eine wichtige Bestimmungsbedingung für die Auswahl von Photovoltaikmodulen.Der Wechselstromausgang des netzgekoppelten Photovoltaik-Wechselrichters umfasst hauptsächlich Nennausgangsleistung, maximale Ausgangsleistung, maximalen Ausgangsstrom, Nennnetzspannung usw. Die Ausgangsleistung des Wechselrichters darf unter normalen Arbeitsbedingungen die Nennleistung nicht überschreiten. Wenn ausreichend Sonnenschein vorhanden ist, kann der Ausgang des Wechselrichters für kurze Zeit mit der maximalen Ausgangsleistung betrieben werden.Darüber hinaus ist der Leistungsfaktor des Wechselrichters das Verhältnis der Ausgangsleistung zur Scheinleistung. Je näher dieser Wert bei 1 liegt, desto höher ist der Wirkungsgrad des Wechselrichters.Zu den Schutzfunktionen von netzgekoppelten Photovoltaik-Wechselrichtern gehören hauptsächlich DC-Verpolungsschutz, AC-Kurzschlussschutz, Anti-Islanding-Schutz, Überspannungsschutz, AC- und DC-Überspannungs- und Unterspannungsschutz, Leckstromschutz usw.1. DC-Verpolungsschutz: Verhindert einen AC-Kurzschluss, wenn der positive Eingangsanschluss und der negative Eingangsanschluss des Wechselrichters vertauscht sind.2. AC-Kurzschlussschutz: Verhindern Sie einen Kurzschluss auf der AC-Ausgangsseite des Wechselrichters. Gleichzeitig schützt sich der Wechselrichter bei einem Kurzschluss im Stromnetz.3. Anti-Islanding-Schutz: Wenn das Stromnetz Strom und Spannung verliert, funktioniert der Wechselrichter aufgrund des Spannungsverlusts nicht mehr.4. Überspannungsschutz: Schützt den Wechselrichter vor transienter Überspannung.
  • Wissenschaftliches Wissen über die Stromerzeugung aus Solarenergie Wissenschaftliches Wissen über die Stromerzeugung aus Solarenergie Oct 10, 2023
    1. Was ist Photovoltaik-Stromerzeugung? Unter Photovoltaik-Stromerzeugung versteht man eine Stromerzeugungsmethode, bei der Sonnenstrahlung direkt in elektrische Energie umgewandelt wird. Die Photovoltaik-Stromerzeugung ist heute der Hauptstrom der Solarstromerzeugung. Daher wird das, was heute oft als Solarenergieerzeugung bezeichnet wird, als Photovoltaik-Stromerzeugung bezeichnet.  2. Kennen Sie den historischen Ursprung der Photovoltaik-Stromerzeugung? Im Jahr 1839 entdeckte der 19-jährige Becquerel aus Frankreich bei physikalischen Experimenten den „photovoltaischen Effekt“, als er herausfand, dass der Strom zunimmt, wenn zwei Metallelektroden in einer leitfähigen Flüssigkeit mit Licht bestrahlt werden.  Im Jahr 1930 schlug Lange erstmals vor, den „Photovoltaikeffekt“ zur Herstellung von Solarzellen zu nutzen, um Sonnenenergie in elektrische Energie umzuwandeln. 1932 stellten Odubot und Stola die erste „Cadmiumsulfid“-Solarzelle her. 1941 entdeckte Audu den photovoltaischen Effekt auf Silizium. Im Mai 1954 brachten Chapin, Fuller und Pierson von Bell Labs in den USA eine monokristalline Silizium-Solarzelle mit einem Wirkungsgrad von 6 % auf den Markt. Dies war die erste Solarzelle der Welt mit praktischem Nutzen. Im selben Jahr entdeckte Wick erstmals den photovoltaischen Effekt von Nickelarsenid und lagerte einen Nickelsulfidfilm auf Glas ab, um eine Solarzelle herzustellen. Die praktische Photovoltaik-Stromerzeugungstechnologie, die Sonnenlicht in elektrische Energie umwandelt, wurde geboren und entwickelt.  3. Wie erzeugen Photovoltaik-Solarzellen Strom? Eine Photovoltaik-Solarzelle ist ein Halbleiterbauelement mit Licht- und Stromumwandlungseigenschaften. Es wandelt Sonnenstrahlungsenergie direkt in Gleichstrom um. Es ist die grundlegendste Einheit der photovoltaischen Stromerzeugung. Die einzigartigen elektrischen Eigenschaften von Photovoltaikzellen werden durch den Einbau bestimmter Elemente in kristallines Silizium erreicht. Elemente (wie Phosphor oder Bor usw.) verursachen dadurch ein dauerhaftes Ungleichgewicht in der molekularen Ladung des Materials und bilden ein Halbleitermaterial mit besonderen elektrischen Eigenschaften. In Halbleitern mit besonderen elektrischen Eigenschaften können unter Sonnenlicht freie Ladungen erzeugt werden. Diese freien Ladungen richten sich in Richtung Bewegung und Akkumulation aus und erzeugen so elektrische Energie, wenn ihre beiden Enden geschlossen sind. Dieses Phänomen wird als „photovoltaischer Effekt“ bezeichnet.    4. Aus welchen Komponenten besteht eine Photovoltaik-Stromerzeugungsanlage? Das Photovoltaik-Stromerzeugungssystem besteht aus einem Solarpanel-Array, einem Controller, einem Batteriepack, einem DC/AC-Wechselrichter usw. Die Kernkomponente des Photovoltaik-Stromerzeugungssystems ist das Solarpanel. Es besteht aus in Reihe geschalteten Photovoltaik-Solarzellen , parallel und verpackt. Es wandelt die Lichtenergie der Sonne direkt in elektrische Energie um. Der vom Solarpanel erzeugte Strom ist Gleichstrom. Wir können es verwenden oder einen Wechselrichter verwenden, um es für den Gebrauch in Wechselstrom umzuwandeln. Einerseits kann die von der Photovoltaik-Solaranlage erzeugte elektrische Energie sofort genutzt werden, oder die elektrische Energie kann mithilfe von Energiespeichern wie Batterien gespeichert und bei Bedarf jederzeit zur Nutzung freigegeben werden.
  • Wie kann die Stromerzeugungseffizienz von Solarstationen verbessert werden? Wie kann die Stromerzeugungseffizienz von Solarstationen verbessert werden? Sep 26, 2023
    Es gibt viele Faktoren, die die Stromerzeugung und den Wirkungsgrad einer Solaranlage gleicher Leistung beeinflussen. Heute führt Sie SAIL SOLAR zu einem Studium.    1. Sonnenstrahlung  Wenn die Umwandlungseffizienz von Sonnenkollektor konstant ist, wird die Stromerzeugung des Sonnensystems durch die Intensität der Sonnenstrahlung bestimmt. Normalerweise beträgt der Nutzungswirkungsgrad der Sonnenstrahlung durch Solaranlagen nur etwa 10 %. Daher müssen die Intensität der Sonneneinstrahlung, die spektralen Eigenschaften und die Klimabedingungen berücksichtigt werden. Wenn die Stromerzeugung des laufenden Jahres den Standard überschreitet oder unterschreitet, ist es wahrscheinlich, dass die Gesamtsonneneinstrahlung dieses Jahres vom Durchschnitt abweicht.   2. Neigungswinkel des Solarpanels  Der Azimutwinkel des Solarmoduls wird im Allgemeinen in Südrichtung gewählt, um die Stromerzeugung pro Kapazitätseinheit der Solarstation zu maximieren. Solange es innerhalb von ±20° genau nach Süden liegt, wird es keinen großen Einfluss auf die Stromerzeugung haben. Wenn es die Bedingungen zulassen, sollte der Winkel bis zu 20° südwestlich betragen. Die oben genannten Winkelempfehlungen basieren auf der Installation auf der Nordhalbkugel und umgekehrt auf der Südhalbkugel. Die Neigungswinkel variieren von Ort zu Ort und lokale Installateure sind mit dem optimalen Neigungswinkel für Komponenten besser vertraut. Wenn es sich um ein Schrägdach handelt, werden viele davon der Schönheit halber unabhängig vom Neigungswinkel flach auf das Dach gelegt, um Klammern zu sparen.   3. Effizienz und Qualität von Solarmodulen Auf dem Markt stehen viele Solarmodultypen zur Auswahl, wie z. B. polykristallines Silizium, monokristallines Silizium Sonnenkollektorusw. Verschiedene Solarmodule haben unterschiedliche Effizienz, Dämpfung und Qualität der Stromerzeugung. Das Wichtigste ist, sie über reguläre Vertriebskanäle zu einem angemessenen Marktpreis zu erwerben. Nur so können Sie eine stabile und zuverlässige Stromerzeugung für 25 Jahre gewährleisten.   4. Anpassungsverlust des Solarmoduls Jede Reihenschaltung führt aufgrund der Stromdifferenz der Solarmodule zu einem Stromverlust, und jede Parallelschaltung führt aufgrund der Spannungsdifferenz der Solarmodule zu einem Spannungsverlust. Die Verluste können mehr als 8 % betragen. Um den Anpassungsverlust zu reduzieren und die Stromerzeugungskapazität der Solaranlage zu erhöhen  Station sollten wir auf folgende Aspekte achten: 1) Um Anpassungsverluste zu reduzieren, versuchen Sie, Solarmodule mit konstantem Strom in Reihe zu verwenden. 2) Die Dämpfung von Solarmodulen sollte so konstant wie möglich gehalten werden; 3) Isolationsdiode.  5. Temperatur (Lüftung) Daten zeigen, dass bei einem Temperaturanstieg um 1 °C die Ausgangsleistung des Solarmoduls aus kristallinem Silizium um 0,04 % abnimmt. Daher ist es notwendig, den Einfluss der Temperatur auf die Stromerzeugung zu vermeiden und gute Belüftungsbedingungen für die Solarmodule aufrechtzuerhalten.    6. Wirkung von Staub Das kristalline Silizium-Solarpanel besteht aus gehärtetem Glas. Wenn es längere Zeit der Luft ausgesetzt ist, sammeln sich auf natürliche Weise organische Stoffe und große Mengen Staub an. Staub, der auf die Oberfläche fällt, blockiert das Licht, was die Leistungseffizienz der Solarmodule verringert und sich direkt auf die Stromerzeugung auswirkt. Gleichzeitig kann es auch zu einem „Hot-Spot“-Effekt auf den Solarmodulen kommen, der zu Schäden an den Komponenten führt. Die Solarpanel-Station muss rechtzeitig gereinigt werden.   7. Schatten, Schneedecke Bei der Standortwahl der Solarlösung muss auf die Lichtabschirmung geachtet werden. Vermeiden Sie Bereiche, in denen das Licht blockiert sein könnte. Nach dem Schaltungsprinzip wird bei der Reihenschaltung von Solarmodulen der Strom durch die kleinsten Solarmodule bestimmt. Wenn also ein Solarmodul abgeschattet wird, wirkt sich dies auf die Stromerzeugung dieser Solarmodule aus. Deshalb dürfen Sie bei der Installation eines Solarkraftwerks nicht auf große Kapazitäten aus sind. Sie müssen die Dachfläche berücksichtigen und prüfen, ob rund um das Dach Hindernisse vorhanden sind.  8. Verfolgung der maximalen Ausgangsleistung (MPPT) Der MPPT-Wirkungsgrad ist ein Schlüsselfaktor bei der Bestimmung der Stromerzeugung Solarwechselrichter, und seine Bedeutung geht weit über die Effizienz des Solarwechselrichters selbst hinaus. Die MPPT-Effizienz ist gleich der Hardware-Effizienz mal der Software-Effizienz. Die Hardwareeffizienz wird hauptsächlich durch die Genauigkeit des Stromsensors und die Genauigkeit der Abtastschaltung bestimmt. Die Softwareeffizienz wird durch die Abtastfrequenz bestimmt. Es gibt viele Möglichkeiten, MPPT zu implementieren, aber egal welche Methode verwendet wird, müssen zunächst die Leistungsänderungen des Solarmoduls gemessen und dann auf die Änderungen reagiert werden. Die Schlüsselkomponente hierbei ist der Stromsensor. Seine Genauigkeit und sein linearer Fehler bestimmen direkt die harte Effizienz, und die Abtastfrequenz der Software wird auch durch die Genauigkeit der Hardware bestimmt.   9. Reduzieren Sie Leitungsverluste In Solaranlagen machen Kabel einen kleinen Teil aus, doch der Einfluss von Kabeln auf die Stromerzeugung ist nicht zu vernachlässigen. Es wird empfohlen, den Leitungsverlust der DC- und AC-Schleifen des Systems auf maximal 5 % zu beschränken. Die Kabel im System müssen seingut vorbereitet, einschließlich der Isolationsleistung des Kabels, der hitzebeständigen und flammhemmenden Leistung des Kabels, der feuchtigkeits- und lichtbeständigen Leistung des Kabels, der Art des Kabelkerns sowie der Größe und Spezifikation des Kabels Kabel. Daher müssen wir im täglichen Betrieb und bei der Wartung prüfen, ob die Leitungen beschädigt sind und ob Leckagen oder andere Bedingungen vorliegen. Besonders nach jedem Taifun oder Hagelsturm ist es wichtig zu prüfen, ob die Leitungen und Anschlüsse locker sind.   10. Effizienz des Wechselrichters Der Solarwechselrichter ist die Hauptkomponente und wichtige Komponente der Solaranlage. Um den normalen Betrieb des Kraftwerks sicherzustellen, ist die richtige Konfiguration und Auswahl des Wechselrichters besonders wichtig. Zusätzlich zu den verschiedenen technischen Indikatoren des gesamten Solarstromerzeugungssystems und dem vom Hersteller bereitgestellten Produktmusterhandbuch müssen bei der Konfiguration des Wechselrichters im Allgemeinen die folgenden technischen Indikatoren berücksichtigt werden: 1. Nennausgangsleistung 2. Leistung der Ausgangsspannungsanpassung 3 ,Gesamtmaschineneffizienz 4.Startleistung. Es gibt nicht viele alltägliche Umgebungen, die die Effizienz des Wechselrichters beeinträchtigen. Achten Sie darauf, den Wechselrichter an einem kühlen Ort zu installieren und sorgen Sie für eine gute Belüftung der Umgebung, um die Wärmeableitung des Wechselrichters zu erleichtern. Insbesondere im Sommer und Herbst kann eine normale Wärmeableitung die Stromerzeugungseffizienz des Wechselrichters aufrechterhalten.
  • Wie soll ein Photovoltaik-Kraftwerk die Regenzeit überstehen? Wie soll ein Photovoltaik-Kraftwerk die Regenzeit überstehen? Aug 23, 2023
    Mit Regenzeit Kommen, wird das Wetter immer heißer und feuchter. Bei Photovoltaik-Kraftwerken wird einerseits die Spitzenzeit der Stromerzeugung eingeläutet; Andererseits stellen die schwankenden Temperaturen und die häufigen Gewitter auch große Herausforderungen für den sicheren und effizienten Betrieb des Kraftwerks dar. Erfahren Sie unter folgenden Gesichtspunkten mehr über die Vorsichtsmaßnahmen für Photovoltaik-Kraftwerke:1. Anti-Hochtemperatur 2. Anti-Sturm 3. Anti-Blitz 1. Wie verhindert man hohe Temperaturen?Luftzirkulation sicherstellen: Sorgen Sie für eine reibungslose Luftzirkulation um den Wechselrichter herum. Installieren Sie den Wechselrichter nicht in einer engen und geschlossenen Umgebung. Wenn mehrere Wechselrichter auf derselben Ebene installiert werden, muss darauf geachtet werden, dass zwischen ihnen genügend Platz vorhanden ist. Dadurch wird nicht nur die Belüftung und Wärmeableitung des Wechselrichters gewährleistet, sondern es bleibt auch genügend Betriebsraum für spätere Wartungsarbeiten vorhanden. Vermeiden Sie Wind und Sonne: Obwohl der Schutzgrad unseres Wechselrichters die Anforderungen für den langfristigen Einsatz im Freien erfüllt, kann die Verringerung der Wahrscheinlichkeit, dass der Wechselrichter Wind, Sonne und Regen ausgesetzt ist, die Lebensdauer des Wechselrichters verlängern. Bei der Installation des Wechselrichters können Sie wählen, ob er an der Unterseite des Moduls oder unter der Dachtraufe installiert werden soll. Wenn der Wechselrichter im Freien installiert wird, wird empfohlen, gleichzeitig eine Markise zu installieren, die nicht nur Schutz vor Wind und Regen bietet, sondern auch direkte Sonneneinstrahlung reduziert, die Temperatur des Wechselrichters senkt und eine Lastreduzierung durch Überhitzung verhindert des Wechselrichters und sorgt für die Effizienz der Stromerzeugung. 2. Wie kann man starken Regen verhindern?Im Sommer kommt es häufig zu Regenfällen, und die Hauptauswirkung auf Photovoltaik-Kraftwerke besteht darin, dass große Mengen Regenwasser Kabel und Komponenten durchnässen und die Isolationsleistung beeinträchtigt oder sogar beschädigt wird, was dazu führt, dass der Wechselrichter einen Fehler erkennt und keinen Strom erzeugt. Das geneigte Dach selbst verfügt über eine starke Entwässerungskapazität, und im Allgemeinen kommt es zu keiner übermäßigen Wasseransammlung; Liegt die Unterkante des Moduls niedrig auf dem Flachdach, kann es durch Regenwasser durchnässt werden; Bei auf dem Boden installierten Photovoltaik-Kraftwerken kann das Auswaschen des Bodens durch Regenwasser zu einem Ungleichgewicht der Module führen. Handelt es sich bei dem Dach, auf dem das Photovoltaik-Kraftwerk installiert ist, um ein Schrägdach, besteht grundsätzlich kein Grund zur Sorge vor starkem Regen. Wenn es sich um ein Flachdach handelt, ist es am besten, die Entwässerungsproblematik bereits bei der Planung und Installation des Photovoltaikkraftwerks zu berücksichtigen. Durch die relativ niedrige Konsolmontage des Flachdaches bei zu starken Niederschlägen soll vermieden werden, dass die Photovoltaikmodule durch Regenwasser durchnässt werden. Konkrete Maßnahmen zur Verhinderung von Regenfällen in Kraftwerken:A. Bei der Planung eines Kraftwerks sollten geografische und geologische Faktoren berücksichtigt werden, wie z. B. die Ausrichtung des gewählten Geländes, der Grad der Hangschwankung, versteckte Gefahren geologischer Katastrophen, die Tiefe des angesammelten Wassers, der Hochwasserstand, die Entwässerungsbedingungen usw .B. Für die bereits gebauten Kraftwerke sollten wissenschaftlich Entwässerungssysteme hinzugefügt werden.Hinweis: Vermeiden Sie bei Inspektions- und Wartungsarbeiten an regnerischen Tagen elektrische Arbeiten mit bloßen Händen und berühren Sie den Wechselrichter, Komponenten, Kabel und Anschlüsse nicht direkt mit Ihren Händen. Um das Risiko eines Stromschlags zu verringern, müssen Sie Gummihandschuhe und Gummistiefel tragen. 3. Wie kann man einen Blitzschlag verhindern?Für den Blitzschutz von Photovoltaik-Kraftwerken sollte neben der herkömmlichen Schutzerdung auf der Komponentenseite, der Trägerseite und der Verteilerkastenseite auch der Wechselrichter als elektrisches Kerngerät des Photovoltaik-Kraftwerks gut vor Blitzschutz geschützt werden . Elektrische Erdung und Schutzerdung zum Schutz. Elektrische Erdung: Im Allgemeinen wird die elektrische Erdung an die PE-Reihe des Elektrokastens angeschlossen und dann über den Verteilerkasten geerdet. Der elektrische Erdungspunkt befindet sich im Allgemeinen am AC-Anschluss des Wechselrichters und ist mit dem PE-Symbol (Erdung) gekennzeichnet. Schutzerdung: Das Wechselrichtergehäuse verfügt über ein Erdungsloch zur Erdung, um die Sicherheit des Wechselrichters und der Bediener zu schützen. Der Schutzerdungspunkt des Wechselrichters befindet sich am Gehäuse des Wechselrichters und ist mit einer Erdungsmarkierung versehen. Generell wird empfohlen, nur an die Schutzerde anzuschließen (da Blitzstromentladungen, Störungen und statische Elektrizität alle in die Schutzerde gehen). Schutz vor direkten Blitzeinschlägen: Installieren Sie an hohen Gebäuden metallene Blitzschutz-Erdungsleiter, einschließlich Blitzableitern, Blitzschutzgürteln und Erdungsgeräten, die die gewaltige Ladung der Gewitterwolken ableiten können. Alle elektrischen Geräte der Photovoltaikanlage können nicht vor direkten Blitzeinschlägen schützen. Induktiver Blitzschutz: Photovoltaikanlagen verfügen über elektrische BlitzschutzmoduleGeräte wie Anschlusskästen und Wechselrichter zum Schutz vor indirekten Blitzeinschlägen. Der Wechselrichter verfügt über zwei Blitzschutzstufen und drei Blitzschutzstufen. Die zweite Blitzschutzstufe nutzt Blitzschutzmodule, die in der Regel in mittleren und großen Photovoltaikkraftwerken zum Einsatz kommen. Rund um das Kraftwerk gibt es keine hohen Gebäude. Die dritte Blitzschutzstufe nutzt Blitzschutzgeräte. Es wird für kleine Photovoltaik-Haushaltskraftwerke verwendet, und rund um das Kraftwerk befinden sich hohe Gebäude. Das Photovoltaik-Stromerzeugungssystem ist mit Blitzschutzgeräten ausgestattet und der Deye-Wechselrichter verfügt über ein eingebautes sekundäres Blitzschutzmodul, sodass er bei normalem Blitzwetter nicht abgeschaltet werden muss. Bei starkem Gewitter wird aus Sicherheitsgründen empfohlen, den DC-Schalter des Wechselrichters oder des Generatorkastens zu trennen und die Stromkreisverbindung zum Photovoltaikmodul zu unterbrechen, um Schäden durch induzierte Blitze zu vermeiden.
  • Kabelauswahl für Photovoltaikkraftwerke Kabelauswahl für Photovoltaikkraftwerke Aug 11, 2023
    Im Sonnensystem sind die Kosten für das Kabel zwar nicht hoch, da das „Blutgefäß“ des pv System spielt es eine wichtige Rolle bei der Verbindung PV-Moduls, Wechselrichter, Verteilerkästen und das Netz, und Auch spielt eine wichtige Rolle für die Betriebssicherheit des ganz System, welche sogar Einflüsse die Gesamtrentabilität des Kraftwerks. Daher ist die Kabelauswahl im Systemdesignprozess sehr wichtig. 1. Arten von pv KabelAus Sicht verschiedener Funktionen sind die Kabel im pv Das System kann hauptsächlich in zwei Typen unterteilt werden: Gleichstromkabel und Wechselstromkabel. 1.1 Gleichstromkabel① Serielle Kabel zwischen PV-Moduls.② Parallele Kabel zwischen Strings und zwischen Strings und DC-Verteilerkasten (Combiner-Box).③ Kabel zwischen DC-Verteilerkasten und Wechselrichter.Bei den oben genannten Kabeln handelt es sich ausschließlich um Gleichstromkabel, und das ist häufig der Fall gelegt draußen. Sie müssen vor Feuchtigkeit, Sonneneinstrahlung, Kälte, Hitze und ultravioletten Strahlen geschützt werden. In einigen speziellen Umgebungen müssen sie außerdem beständig gegen chemische Substanzen wie Säuren und Laugen sein. 1.2 AC-Kabel① Verbindungskabel vom Wechselrichter zum Aufwärtstransformator.② Verbindungskabel vom Aufwärtstransformator zur Stromverteilereinheit③ Verbindungskabel vom Stromverteilungsgerät zum Stromnetz oder zu den BenutzernThe oben Kabels sind alle AC-Lastkabel, das Sind werden häufig in Innenräumen verlegt und können entsprechend den allgemeinen Anforderungen an die Auswahl von Stromkabeln ausgewählt werden. 2. Warum dediziert wählen? pv Kabel?Unter vielen Umständen, Gleichstromkabel müssen im Freien verlegt werden. Die Kabelmaterialien sollten entsprechend der Beständigkeit gegenüber ultravioletten Strahlen, Ozon, starken Temperaturschwankungen und chemischer Erosion bestimmt werden. Der langfristige Einsatz von Kabeln aus gewöhnlichem Material in dieser Umgebung führt zum Bruch des Kabelmantels und sogar zur Zersetzung der Kabelisolationsschicht. Diese Bedingungen führen zu direkten Schäden am Kabelsystem und erhöhen auch das Risiko System Kurzschluss. Mittel- und langfristig ist auch die Möglichkeit eines Brandes oder eines Personenschadens höher, was sich stark auf die Situation auswirkt Lebensdauer vom System. Daher ist die Verwendung von Dedicate unbedingt erforderlich pv Kabel und ModulS. Solarspezifische Kabel und ModulSie verfügen nicht nur über die beste Witterungs-, UV- und Ozonbeständigkeit, sondern können auch einem größeren Temperaturbereich standhalten. 3. Grundsätze des Kabeldesigns und der Kabelauswahl① Die Spannungsfestigkeit des Kabels sollte größer sein als die maximale Spannung des Systems. Beispielsweise würden für Wechselstromkabel mit 380-V-Ausgang 450/750-V-Kabel ausgewählt.② Für die Verbindung innerhalb und zwischen den Systemfeldern beträgt der Nennstrom des ausgewählten Kabels das 1,56-fache des maximalen Dauerstroms im berechneten Kabel.③ Für den Anschluss von Wechselstromlasten beträgt der Nennstrom des gewählten Kabels das 1,25-fache des berechneten maximalen Dauerstroms im Kabel.④ Für den Anschluss des Wechselrichters beträgt der Nennstrom des gewählten Kabels das 1,25-fache des berechneten maximalen Dauerstroms im Kabel.⑤ Berücksichtigen Sie den Einfluss der Temperatur auf die Leistung des Kabels. Je höher die Temperatur, desto geringer ist die Strombelastbarkeit des Kabels und das Kabel sollte möglichst an einem belüfteten und wärmeableitenden Ort verlegt werden.⑥ Bedenken Sie, dass der Spannungsabfall 2 % nicht überschreiten sollte. 4. Der Gleichstromkreis wird während des Betriebs häufig durch verschiedene ungünstige Faktoren beeinflusst und führt zu einer Erdung, die das System funktionsunfähig macht arbeiten. Extrusion, mangelhafte Kabelherstellung, ungeeignete Isoliermaterialien, geringe Isolierleistung, Alterung der DC-Systemisolierung oder einige Schadensdefekte können Erdschlüsse verursachen oder eine Erdungsgefahr darstellen. Darüber hinaus ist das Eindringen oder Beißen von wild Tiere im Freien verursachen ebenfalls einen Gleichstrom-Erdschluss. In diesem Fall handelt es sich in der Regel um armierte Kabel mit nagetiersicherem Funktionsmantel notwendig. 5. Zusammenfassung: Wählen Sie das geeignete Kabel entsprechend der vom Wechselrichter unterstützten Netzform aus Daten des maximalen Dauerstroms im Kabel.
  • Was ist ein Anti-Rückfluss? Wie verhindert man einen Rückfluss? Aug 04, 2023
    In a In einem Energiesystem wird Strom im Allgemeinen vom Netz zur Last geleitet, was als Vorwärtsstrom bezeichnet wird. Nach der Installation eines Photovoltaik-Kraftwerks, wenn die Leistung des pv System ist größer als Das der Last wird der Strom, der nicht verbraucht werden kann, ins Netz eingespeist. Da die Stromrichtung der herkömmlichen entgegengesetzt ist, wird sie aufgerufen “Gegenstrom". 1. Was ist Anti-Rückfluss?An üblich Photovoltaik-Stromerzeugungsanlage wandelt um Wechselstrom zu Gleichstrom. Wenn die Leistung der Photovoltaikanlage beträgt größer als Das der örtlichen Belastung, der zusätzliche Strom wird an das Netz gesendet. Die Photovoltaikanlage mit CT (Stromwandler) verfügt über eine Anti-Rückfluss-Funktion, die bedeutet, dass der durch Photovoltaik erzeugte Strom nur an Verbraucher abgegeben wird und somit verhindert wird, dass überschüssiger Strom ins Netz eingespeist wird. 2. Warum brauchen Sie Anti-Rückfluss?Es gibt mehrere Gründe für die Installation ein Anti-Rückfluss Präventionslösung:2.1.Begrenzt durch die Kapazität des oberen Transformators, Benutzer haben neues Rastersystem Installationsbedarfs, aber es ist lokal nicht erlaubt.2.2.Aufgrund einiger regionaler Richtlinien ist der Netzanschluss nicht gestattet. Sobald es gefunden wird, verhängt der Netzbetreiber ein Bußgeld.2.3.Der PV-Panels wurden installiert, aber aufgrund unvollständiger Anmeldeinformationen (z. B. unklare Immobilieneigentumsrechte usw.) kann die Netz Das Unternehmen erlaubt keinen Netzanschluss und die Kosten für die Installation von Energiespeichersystemen sind hoch sehr hoch. 3. Wie erreicht man einen Rückflussschutz?Installieren Sie am Netzanschlusspunkt einen Zähler oder einen Stromsensor und geben Sie die erkannten Netzzugangspunktdaten an den Wechselrichter zurück. Wenn er erkennt, dass Strom ins Netz fließt, reagiert der Wechselrichter schnell und reduziert die Ausgangsleistung, bis der Gegenstrom Null ist, um so einen leistungsfreien Internetzugang zu erreichen. 4. Die Lösung?Deye Funktionsprinzip des Wechselrichter-Rückflussschutzes: Installieren Sie einen Zähler mit CT oder Stromsensor am Netzanschlusspunkt. Wenn erkannt wird, dass Strom in das Netz fließt, erfolgt eine Rückmeldung an den Wechselrichter. Der Wechselrichter ändert sofort seinen Arbeitsmodus und folgt dem maximalen Leistungspunkt des MPPT. Der Arbeitsmodus wird in den Steuerausgangsleistungs-Arbeitsmodus übertragen, und die Ausgangsleistung des Wechselrichters entspricht nahezu der Last Seite, um die Anti-Rückfluss-Funktion zu realisieren. Je nach Systemspannungsniveau, Photovoltaik-Anti-Rückfluss Systeme können in einphasige Anti-Rückfluss Systeme, Drehstrom- und Energiespeichersystem einss.
  • Der Unterschied zwischen der Effizienz von Solarmodulen und der Effizienz von Solarzellen Der Unterschied zwischen der Effizienz von Solarmodulen und der Effizienz von Solarzellen Jun 09, 2023
    Wie berechnet man den Wirkungsgrad von Solarmodulen? Nehmen wir als Beispiel das Solarpanel SAIL SOLAR 550W und berechnen den Modulwirkungsgrad.PV-Modulleistung (Pmax in Watt) ÷ PV-Moduloberfläche in Quadratmetern u003d 550 W / (2,279 m * 1,134 m) / 1000 u003d21,3 % Was ist der Wirkungsgrad von Solarzellen?Unter dem Wirkungsgrad von Solarzellen versteht man die Energieeffizienz, mit der eine Solarzelle diese mithilfe der Photovoltaik-Technologie in Strom umwandelt. Nehmen Sie auch das SAIL SOLAR 550W als Beispiel.SAIL SOLAR 550W besteht aus einer 182-mm-Solarzelle (Abmessung: 182*91 mm). 144 Zellen.550 W/144 u003d 3,82 W pro Zelle 3,82 W/(0,182 m x 0,091 m)/1000 u003d 23,1 % Warum gibt es einen Unterschied zwischen der Effizienz von Solarmodulen und der Effizienz von Solarzellen?Im Vergleich zum oben erwähnten Beispiel des SAIL SOLAR 550W beträgt der Wirkungsgrad der Solarzelle 23,1 %, während der Wirkungsgrad des Solarmoduls 21,3 % beträgt. Der Grund für diesen Unterschied besteht darin, dass sich die Berechnungen der Zelleffizienz auf einzelne Zellen beziehen, während sich die Effizienz von Solarmodulen auf das gesamte Solarmodulmodul bezieht. Aufgrund der Abstände zwischen den Solarzellen geht ein Teil der Energie verloren.In ähnlicher Weise ist auch die Stromschiene des Solarpanels auf der Oberfläche der Zelle abgedeckt. Je dünner die Stromschienen sind, desto weniger Effizienz geht dem Solarpanel verloren. Darüber hinaus wirkt sich auch der Schatten der Stromschiene auf der Zelle auf den Wirkungsgrad aus. Beispielsweise beträgt die Dicke der Sammelschiene einer 5-Stab-Solarzelle 0,4 mm, während die einer 9-Stab-Solarzelle 0,1 mm beträgt. Dies führt auch zu einem Unterschied zwischen der Effizienz von Solarmodulen und der Effizienz von Solarzellen. Tatsächlich haben auch andere Rohstoffe, die zur Herstellung von Solarmodulen verwendet werden, wie Glas, EVA, Anschlusskästen usw., einen gewissen Einfluss auf die Effizienz. Dann gibt es noch den „Füllfaktor“, oft als FF abgekürzt, der ein Maß dafür ist, wie nahe eine Solarzelle einer idealen Lichtquelle kommt. Dies ist ein wichtiger Parameter zur Leistungsbeurteilung. Es ist einfach zu verstehen, dass dieser Parameter zur Bestimmung der maximalen Leistung der Solarzelle verwendet wird.
  • Wie reinigt man ein Solarpanel-Array? Wie reinigt man ein Solarpanel-Array? Mar 09, 2023
    Bei der Planung und Installation von Photovoltaik-Kraftwerken sollte auf Verschattungen geachtet werden und dem späteren Betrieb und der Wartung mehr Aufmerksamkeit geschenkt werden. Für den langfristigen Betrieb von Photovoltaik-Stromerzeugungssystemen hat die Staubansammlung auf den Modulen einen großen Einfluss auf die Effizienz der Stromerzeugung. Der Staub auf der Oberfläche des Panels hat die Funktion, Sonnenstrahlung zu reflektieren, zu streuen und zu absorbieren, was die Durchlässigkeit der Sonne verringern kann, was zu einer Verringerung der vom Panel empfangenen Sonnenstrahlung führt und auch die Ausgangsleistung verringert. und seine Wirkung ist proportional zur angesammelten Staubdicke. Häufige Schatten sind vor allem Vogelkot, Staub, Baumschatten, Gebäude, abgefallene Blätter und Äste usw.Derzeit gibt es drei Reinigungsmethoden für die Photovoltaik: menschliche Arbeit, Wasserradreinigung und Roboterreinigung.1. Merkmale menschlicher Arbeit Schwer zu verwalten, ineffizient und lange Arbeitszeiten. Der Reinigungsprozess beeinflusst die Stromerzeugung. Die Reinigungsqualität lässt sich nur schwer garantieren, außerdem drohen Sicherheitsrisiken und große Verluste im Betrieb.2. Reinigung des WasserradesDer Reinigungsbereich ist begrenzt und nur für Bodenkraftwerke mit ausreichend Platz und freier Ein- und Ausfahrt von Fahrzeugen geeignet. Mit Photovoltaikanlagen auf Dächern, Wüstenkraftwerken oder dicht gedrängten Kraftwerken wird es nichts bringen.3. RoboterreinigungRegelmäßige Reinigung, deutlich erhöhte Stromerzeugung, Nachtarbeit, keine Auswirkungen auf die Stromerzeugung, mehr als 50-mal effizienter als menschliches Arbeiten, selbstversorgt, selbstspeichernd, keine externe Energie, unbeaufsichtigt, intelligente Steuerung, keine Wasserreinigung, kein Abfall der Wasserressourcen.
1 2

A total of2pages

Need Help? Chat with us

Unsere Stunden
Mo. 21.11. - Mi. 23.11.: 9.00 - 20.00 UhrDo. 24.11.: geschlossen – Happy Thanksgiving!Fr. 25.11.: 8:00 - 22:00 UhrSa. 26.11. - So. 27.11.: 10.00 - 21.00 Uhr(Alle Stunden sind Eastern Time)
einreichen
KONTAKTIERE UNS #
+86 -18655186412

Unsere Stunden

Mo. 21.11. - Mi. 23.11.: 9.00 - 20.00 Uhr
Do. 24.11.: geschlossen – Happy Thanksgiving!
Fr. 25.11.: 8:00 - 22:00 Uhr
Sa. 26.11. - So. 27.11.: 10.00 - 21.00 Uhr
(Alle Stunden sind Eastern Time)

Heim

Produkte

whatsApp

Kontakt